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Abstract

Many rocks are representative of inclusion–matrix systems where rigid inclusions float on a ductile matrix. The geological analogues of

such inclusion–matrix systems are theoretically modelled with the help of Jeffery’s (1922) theory. In recent years, there have been a number

of reinvestigations on the rotational motion of rigid inclusions to account for some geological observations that are not yet predicted in

models based on Jeffery’s theory. Adding to this effort, this paper investigates the effects of (1) inclusion concentration and (2) the degree of

coherence at the inclusion–matrix interface on the rotation behaviour of rigid inclusions in a multiple inclusion system during simple shear

deformation. Shear-box experiments were run on models containing multiple, identical elliptic cylinders of wax mimicking rigid inclusion

embedded within putty representing ductile matrix. Two sets of experiments were performed, with and without lubrication at the inclusion–

matrix interfaces. Each model had an isolated inclusion to reveal the variation of rotations of single and multiple inclusions. Increase in

inclusion concentration (a) results in contrasting rotation behaviour of isolated and multiple inclusions initially oriented parallel to the shear

direction. When the interfaces were not lubricated, inclusions in multiple association rotated antithetically, whereas the isolated one almost

remained stationary. In models wherein the inclusion–matrix interfaces were lubricated with liquid soap, both isolated and multiple

inclusions rotated antithetically, but the isolated inclusion rotated at a lower rate. With increasing inclusion concentration, the difference in

the rates of antithetic rotation between isolated and multiple inclusions tended to be larger in both lubricated and non-lubricated conditions.

The sense of rotation of isolated as well as multiple inclusions, initially oriented perpendicular to the shear direction, was always synthetic

irrespective of the nature of the interface (lubricated or non-lubricated); however, the instantaneous rotation rates of inclusions in multiple

association were higher than that of the isolated inclusions disposed in the same orientation.

Rotation of inclusion in an inclusion–matrix system is basically induced by the traction exerted by the flowing matrix on the surface of the

inclusion during deformation. Employing a hydrodynamic model it is shown that mutual mechanical interaction among inclusions, which is a

function of inclusion concentration (a), modifies the stresses at the inclusion–matrix interface to a large extent. Moment calculations reveal

that inclusions oriented parallel to the shear direction experience an antithetic moment in response to the normal stress components, the

magnitude of which increases with increasing inclusion concentration. This implies that rotation of shear-parallel inclusions in antithetic

sense is favoured by higher inclusion concentration. On the other hand, inclusions oriented perpendicular to shear direction experience a

moment that induces synthetic rotation. The magnitude of the synthetic moment is larger for larger inclusion concentration leading to

increase in the rate of synthetic rotation. Using the theoretical model, the moments are calculated as a function of the aspect ratio of

inclusions and the inferences based on this moment calculation are complemented with experimental findings.
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1. Introduction

Understanding the rotational motion of rigid bodies

within a flowing viscous matrix and their governing

physical parameters is essential to analyse many structures

in deformed rocks, such as porphyroclast mantle, porphy-

roblast trail, development of stable fabric etc. A plethora of
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theoretical models have evolved in this subject over the last

couple of decades that quantitatively describe the motion of

rigid objects in progressive deformation, depending on two

parameters: (1) the shape and orientation of rigid objects

and (2) the velocity gradient tensor of bulk flow (Gay,

1968a,b; Ghosh and Ramberg, 1976; Freeman, 1985;

Passchier, 1987, 1994; Masuda et al., 1995; Jezek et al.,

1996; Pennacchioni et al., 2000; Mandal et al., 2001a). A

basic premise in these analyses is that the object remains

attached to the matrix. According to these models, during

progressive simple shear a coherent object would continu-

ously rotate in synthetic sense. However, the rotational

motion of rigid inclusions could significantly vary depend-

ing on the mechanical setting of inclusion–matrix systems

(e.g. Bjornerud and Zhang, 1995). For example, Stewart

(1997) suggested from analogue models that, under special

circumstances, rigid inclusions might remain stationary

during progressive deformation (cf. Bell, 1985; Bell and

Johnson, 1989; Bell and Hickey, 1997). On the other hand, a

number of workers have shown that, in inclusion–matrix

systems with low coherence, the inclusions may rotate

antithetically, and they may acquire a fixed orientation

defining a stable fabric (Ildefonse and Mancktelow, 1993;

Marques and Coelho, 2001; Mancktelow et al., 2002;

Ceriani et al., 2003; Marques and Bose, 2004; Schmid and

Podladchikov, 2004), which cannot be accounted for in the

theoretical models mentioned above. Antithetic rotation of

rigid inclusion with incoherent interface has been clearly

documented in experiments with a single inclusion

(Marques and Coelho, 2001; Mancktelow et al., 2002;

Ceriani et al., 2003). The experimental results of Ildefonse

and Mancktelow (1993) indicate that rigid inclusions may

rotate antithetically in multiple inclusion systems too. In

such a situation, in addition to inclusion–matrix coherence,

mutual interaction among inclusions would be another

controlling factor governing the rotational motion of rigid

inclusions (cf. Samanta et al., 2003). The mechanics of

antithetic rotation of rigid inclusions in a multiple inclusion

system is yet to be fully explored and demands a suitable

dynamic analysis for a reasonable physical explanation of

the phenomenon.

Following the work of Ildefonse et al. (1992a,b), who
Fig. 1. Schematic sketch (plan view) of experimental
dealt with multiple inclusions, we examine, with the help of

analogue models, the rotational motion of rigid inclusions in

a multiple inclusion system as a function of inclusion

concentration and inclusion–matrix coherence. The paper

also presents a hydrodynamic theory to show the influence

of mechanical interaction on the moment of individual

inclusions that effectively governs the rotational motion of

the inclusions in a bulk simple shear deformation in

response to the traction on them asserted by the flowing

matrix. The theoretical analysis allows us to determine the

rotational motion of inclusions as a function of their

concentration and aspect ratio. Though not attempted

here, the findings of this paper may be utilized to understand

development of stable fabric in multiple inclusion systems

(Mancktelow et al., 2002; Ceriani et al., 2003; Schmid and

Podladchikov, 2004).
2. Analogue models

2.1. Experimental method

We designed our experimental models following the

method of earlier workers (Ildefonse and Mancktelow,

1993). A number of identical elliptic cylindrical rigid

inclusions, made up of wax, were embedded in a ductile

matrix of putty (viscosity w105 Pa s; Fig. 1). Two sets of

experiments were performed with lubricated and non-

lubricated inclusion–matrix interfaces. The interfaces were

lubricated with liquid soap. During simple shear defor-

mation detachment developed at the inclusion–matrix

interfaces, forming fissures on either side of the inclusion

whether or not the interface was lubricated (Fig. 2). We used

markers across the inclusion–matrix interface and tested the

degree of incoherence considering the surface area of

detachment. It was found that for a finite deformation the

proportion of detached area significantly increased in case

of lubricated interface, implying a reduction of inclusion–

matrix coherence (Fig. 2). Moreover, inclusions with

lubricated interface and oriented parallel to the shear

direction rotated antithetically, supporting the existing

notion that low coherence between inclusion and matrix
set-up for model deformation in simple shear.



Fig. 2. Sketches from deformed physical models containing single inclusion to show the difference in the area and mode of detachment due to lubricated and

non-lubricated conditions at the interface. Note that in the case of a lubricated interface the proportion of detachment (extensional and slip) is much more than

around the inclusion without lubrication. Also notice that enhancement of detachment promoted antithetic rotation of the inclusion.
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promotes antithetic rotation (Marques and Coelho, 2001;

Mancktelow et al., 2002; Ceriani et al., 2003).

For a particular condition of inclusion–matrix interface

(lubricated or non-lubricated), we ran experiments in a shear

box by varying inclusion concentration in two sets: one with

the long axes of inclusions oriented parallel and the other

perpendicular to the shear direction. In each experimental

run an inclusion was kept away from the association of

multiple inclusions to observe the difference in rotation

behaviour between a single inclusion and those in interact-

ing state.
2.2. Experimental results
2.2.1. Inclusions with lubricated interface

In experiments with inclusions oriented parallel to the

shear direction, the sense of rotation of single as well as

multiple inclusions was always antithetic as observed in

earlier studies (Ildefonse and Mancktelow, 1993; Marques

and Coelho, 2001; Mancktelow et al., 2002; Ceriani et al.,

2003). This study, in addition, reveals that the magnitude of

antithetic rotation for a given finite shear is sensitive to

inclusion concentration, as reflected in the lower rotation of

the single inclusion kept in isolation from the multiple

inclusions (Fig. 3). Moreover, at every instant of progressive

shearing the isolated inclusion was reoriented antithetically

at an angle (with respect to the shear direction) less than that

of inclusions in multiple associations. It was noticed that the

antithetic rotation of inclusions in multiple associations
tends to cease in the course of progressive shearing, which

may eventually lead to development of a stable fabric

making an angle (w248) to the shear direction (cf.

Mancktelow et al., 2002; Ceriani et al., 2003; Schmid and

Podladchikov, 2004). With decrease in inclusion concen-

tration the rate of antithetic rotation reduced and the

difference in rotation between inclusions occurring in

multiple and single states tended to be small (Fig. 4a).

We performed similar experiments with inclusions

oriented at a right angle to the bulk shear direction (Fig.

5a). In these experiments inclusions in multiple as well as

single states rotated synthetically, but at different rates (Fig.

5b). Experiments with large inclusion concentrations show

that those in multiple associations rotate faster than the

isolated inclusion, suggesting that the mechanical inter-

action among inclusions promote their synthetic rotation.

The difference in the rotation rate tends to decrease as the

inclusion concentration is reduced (Fig. 4b).
2.2.2. Inclusions with non-lubricated interface

The inclusions were initially attached to the matrix.

However, during deformation detachment formed locally at

the inclusion–matrix interface, involving both slip move-

ment and extensional fissures on either side of them, making

the interface partially incoherent (cf. Samanta and Bhatta-

charyya, 2003). Our experiments were designed to test how

such partial coherence subsequently influences the rotation

behaviour of inclusions in multiple associations. The

inclusions oriented parallel to the shear direction and



Fig. 3. Rotation of rigid inclusions (RZ2) with lubricated interfaces in

physical experiments under dextral shear. (a) Initial model containing

inclusions oriented parallel to the shear direction in high concentration

(w40% in area). (b) Deformed model showing antithetic rotation of

isolated as well as multiple inclusions. Finite shear: 0.5. Note that

inclusions occurring in the central portion of the cluster have rotated larger

than the isolated and the peripheral inclusions. Long dimension of

inclusions: 2 cm.

N. Mandal et al. / Journal of Structural Geology 27 (2005) 679–692682
occurring in multiple association rotated significantly in

antithetic sense following development of detachment (Fig.

6). On the other hand, the isolated inclusion did not show

any significant antithetic rotation even when there was slip

as well as extensional detachment at its interfaces,

developing fissures on either side. The rate of antithetic

rotation of multiple inclusions in this case was, however,

less than that observed in the previous models with

lubricated interface. Decreasing inclusion concentration in

the model results in reduction of the rotation rate of multiple

inclusions (Fig. 7).

In the following section we present a theory to show how

the mechanical interaction, which is a function of inclusion

concentration, promotes antithetic rotation of inclusions

oriented parallel to the direction of bulk shear. The theory

imposes the condition of low mechanical strength at the

inclusion–matrix interface simulating the experimental

models with lubricated interfaces.
3. Theory
3.1. Mathematical considerations

Consider a two-dimensional system containing multiple

elliptical rigid inclusions, which are randomly distributed

but uniformly oriented with long axes parallel to the

direction of bulk shear (Fig. 8a). All the inclusions are

assumed to be identical in shape with semi-axes a and b. In

order to analyse the effect of inclusion concentration on the

rotation behaviour of inclusions in an interacting state we

employ the method of moment calculation on individual

inclusions. This involves derivation of the flow field around

an inclusion in an interacting state (cf. Samanta et al., 2003).

In determining the flow field, a Cartesian coordinate frame

xy is chosen at the centre of an inclusion with x-axis along

the a-axis of inclusion. A concentric ellipse is considered

around the inclusion defining its mean boundary of mutual

interaction with the neighbouring inclusions. The boundary

conditions of mechanical interaction are imposed on this

elliptical boundary (Happel, 1957). In this analysis we will

refer to xy space as z-space (Fig. 8b). In the z-space the

boundary of inclusion is expressed as:

x2

a2
C

y2

b2
Z 1 (1)

For the sake of mathematical treatment the z-space is

converted to another space, described as j space employing

the conformal transformation method, where an elliptical

contour in the z-space describes a circle in the j space (Fig.

8b). The mathematical equation of this transformation

follows:

zZuðjÞZ l1 jC
l2

j

� �
; zZ xC iy (2)

where l1 and l2 are two transformation factors and

jZ reif (3)

r and f are polar coordinates in j space. The elliptical

inclusion with semi-axes, a and b, is projected in the j space

as a circle with a radius r1. Using Eqs. (2) and (3), we find:

aZ l1 r1 C
l2

r1

� �
and bZ l1 r1 K

l2

r1

� �
(4)

The concentric boundary ellipse is accordingly trans-

formed to a circle with a radius r2. Therefore, the ratio r1/r2

proxies the measure of inclusion concentration in the

system. The factors l1 and l2 in the conformal transform-

ation are:

l1 Z
RC1

2

b

r1

and l2 Z
RK1

RC1
r2

1

R is the axial ratio of the ellipse. We impose the conditions

of mechanical interaction of neighbouring inclusions at the

contours rZr2 in j space, as given in Eq. 3 of Happel



Fig. 4. Plots of finite rotation of multiple inclusions with finite bulk shear in experimental models. The inclusions were initially oriented (a) parallel and (b)

perpendicular to the shear direction. The average value of their rotation was considered for the plot. Numerical values corresponding to the curves represent the

inclusion concentration in area proportion. RZ2. Notice that for any finite bulk shear, the rotation of inclusions is larger for higher concentrations.
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(1957), which considers no perturbed normal flow across the

contour, and vanishing shear stress component. Employing

these conditions, we can obtain the stress at any point in the

neighbourhood of inclusion in the j space as:

srr ¼ K6r2Aþ 4BK36
C

r3
þ 24

D

r5
þ 2

� �
h _gsinfcosf

sff ¼ ðK70r2AK4BK14
D

r5
K2Þh _gsinfcosf

(5)

A, B, C and D are constants, and their expressions depend on

the concentration parameter a, where aZr1/r2 (Mandal et

al., 2004).

We can transform the stress functions in the z-space

considering the following equations (Mushkhelishvilli,

1953):
sxx Csyy Z srr Csff (6a)

syy Ksxx C2isxy Z sff Ksrr C2isrf
� �

eK2ia (6b)

where

e2ia Z
j2

r2

u0ðjÞ

�u0ðjÞ
; uðjÞZ

d

dj
uðjÞf g (7)

The bar over the function in the numerator of Eq. (7)

represents conjugate of the function. From Eqs. (2) and (7)

we have:

e2ia Z
e2if K l2

r2

1K l2

r2 eK2if
(8)



Fig. 5. Synthetic rotation of multiple inclusions with lubricated interfaces in

experimental models under dextral shear. The inclusions were initially

oriented perpendicular to the shear direction. Note that central inclusions in

the multiple associations (right) have rotated larger than the isolated

inclusion (left). Inclusion concentration w35% in area. RZ2. Finite shear

0.3. Long dimension of inclusions: 2 cm.

Fig. 6. Antithetic rotation of multiple inclusions in physical models with

non-lubricated interfaces. (a) Initial model. (b) Deformed model (finite

shear 0.36). Notice that the isolated inclusion (left) has remained virtually

stationary, whereas the inclusions in multiple associations rotated

antithetically. Inclusion concentration 30% in area. Long dimension of

inclusions: 2 cm. Notice that for any finite bulk shear the rotation of

inclusions is larger for higher concentrations.
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Eq. (8) follows:

sxx Z
srr Csff

2
C

srr Ksff

2
cos2aKsrfsin2a;

syy Z
srr Csff

2
K

srr Ksff

2
cos2aKsrfsin2a;

sxy Z
srr Ksff

2
sin2aCsrfcos2a

(9)

In order to determine the moment in inclusion we need to

consider the traction vector Ti at the surface of inclusion in

the z-space. It follows from Cauchy’s equation:

Ti Z sijnj (10)

where i,jZx,y and n is the unit normal vector to the plane of

interest.

ni Z
cosq

sinq

" #
(11)

q is the inclination of ni to the x-axis. With the help of Eqs.

(8)–(11), we can find the normal and shear stress
components on this plane as:

sZ
srr Csff

2
C

srr Ksff

2
cos2ðaKqÞKsrfsin2ðaKqÞ;

tZ
srr Ksff

2
sin2ðaKqÞCsrfcos2ðaKqÞ

(12)

We now determine moments in the inclusion resulting

from the normal stress s and the shear stress t that act on the

surface of inclusion. Consider a small surface element ds

with unit normal vector ni on the surface of inclusion (Fig.

9a). d is the perpendicular distance of the normal vector

from the centre of inclusion. Moment due to the normal

stress s is: dMnZdsds, which can be presented in terms of

the Cartesian coordinates as:

dMn Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 Cy2

q
sinðqKbÞsds (13)

Similarly, moment due to the shear stress t (Fig. 9b) can

be derived as:

dMt Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 Cy2

q
cosðqKbÞtds (14)



Fig. 7. Plot showing rotation of multiple inclusions with non-lubricated interface during progressive shear in physical experiments for different inclusion

concentrations.
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Differentiating Eq. (1) and after some algebraic manip-

ulations, (qKb) is obtained in terms of Cartesian co-

ordinates as:

tanðqKbÞZ
R2 K1

a2
xy (15)
Fig. 8. (a) Consideration of inclusion–matrix system for theoretical

analysis. Dashed line marks the boundary on which the conditions for

mutual interaction with the neighbouring inclusions are imposed. (b)

Conformal transformation of the real space (z-space) to j-space. Details are

cited in text.
where R is the aspect ratio of inclusion. Eqs. (13) and (14)

can be integrated to find the total moment resulting from the

normal and the stress components on the inclusion. We

calculated these moments numerically using a computer

programme on Visual Basic. The numerical analysis

involved coordinate transformation from z to j space

using Eq. (2), and the stress components were determined in

j space from Eq. (5). We then transformed all the stress

components to z-space, and calculated the moments. It is

evident from Eq. (5) that the normal and shear stresses

acting at the inclusion–matrix interface are functions of

inclusion concentration in the system. In our numerical

calculations, for convenience a is chosen as a measure of

concentration, where aZr1/r2. The value of a tends to be

zero, simulating a single inclusion system. On the contrary,

when it approaches one, it implies a system with densely

packed inclusions remaining in contact with one another

(Mandal et al., 2003). The magnitudes of both normal and

shear stresses increase with increasing inclusion concen-

tration. However, the increase of normal stress component is

larger than that of the shear stress component (Fig. 10). In

the following section we show how inclusion concentration

thereby promotes antithetic rotation of inclusions oriented

parallel to the bulk shear direction.
3.2. Analysis of inclusion rotation

We ran a set of computational runs to find the moment on

inclusions that determines the instantaneous rotation of

inclusion, setting extremely low coherence to the matrix,

i.e. the interfaces were considered to have zero tensile (T0)

and shear strength (S0), and also to be frictionless. In such a

situation the shear stress will exert no moment but the

compressive normal stress component will be the moment

inducing factor that would rotate the inclusion (Eq. (13)). For



Fig. 9. Derivations of the moments on inclusion developed in response to (a) normal and (b) shear traction exerted by the flowing matrix. See text for details.

Fig. 10. Variations of the maximum normal stress (s*
rr) and shear stress (s*

rq), normalized to bulk flow stress, with inclusion concentration.
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a non-zero value ofa, the moment is found to be negative, and

thereby drives the inclusion to rotate antithetically. For a

given aspect ratio, the magnitude of negative moment

increases with increasing inclusion concentration (Fig. 11a),

indicating that inclusions occurring in high concentrations are

likely to show larger antithetic rotation, as observed in

physical experiments. Moment versus concentration plots

suggest that the effect of inclusion concentration becomes

more pronounced when the value of concentration parameter

is higher than 0.4, above which the moment increases with

increasing gradients. The analytical results conform to our

experimental finding, where the difference in antithetic
Fig. 11. (a) Calculated plots of the resultant moment (jm) in incoherent inclusion

plots for different inclusion concentrations. S*
0 ZT *

0 Z0. RZa/b. The momen

components normalized to the bulk flow stress and divided by ab, where a and b
rotation between isolated inclusions and those occurring in

clusters is larger for large inclusion concentration (Fig. 4).

The variation of antithetic moment with inclusion

concentration depends also on the aspect ratio (R) of

inclusion (Fig. 11b). For a given concentration, the

magnitude of moment increases with R, but tends to assume

an asymptotic value. The variation implies that the

instantaneous antithetic rotation will be insensitive to aspect

ratio when the latter becomes large. In order to verify this

theoretical result we conducted a few physical experiments

on multiple inclusion systems considering two clusters of

inclusions with aspect ratios 2 and 4, respectively. The
as a function of inclusion concentration a; (b) Moment versus aspect ratio

t considered here is dimensionless, as it is calculated with the traction

are the axial dimensions of inclusion.
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experiments show that shear-parallel inclusions with aspect

ratio 4 had an instantaneous antithetic rotation more than

that of inclusions with aspect ratio 2 (Fig. 12). The

difference in rotation is, however, small, which can also

be predicted from the theoretical curve. With progressive

shearing this was further reduced, as the inclusions of lower

aspect ratio continued to rotate, whereas those of higher

aspect ratio ceased to rotate.

Numerical simulations were also run imparting strengths
Fig. 12. Three successive stages of shear deformation of a model containing

two clusters of multiple inclusions, one of aspect ratio RZ2 (right) and the

other RZ4 (left). Note that inclusions (central) of larger aspect ratio have

rotated slightly faster at the initial stage. Long dimension of inclusions of

aspect ratio 2 is 2 cm.
at the interfaces. It was revealed that for a given inclusion

concentration the magnitude of antithetic moment decreases

with increasing strengths of inclusion–matrix interfaces

(Fig. 13). Thus, for any volume concentration the

instantaneous antithetic rotation will be lower for higher

inclusion–matrix coherence, which conform to our findings

from physical models (Fig. 6b). However, the variation in

moment due to different coherence is reduced when the

inclusion concentration is large.

The same theory can be used to analyse the rotation

behaviour of inclusions oriented perpendicular to the shear

direction by considering the conformal transformation (Eq.

(2)) as:

zZuðjÞZ l1 jK
l2

j

� �
(16)

We did similar analysis considering the conformal

transformation in Eq. (16). Numerical calculations reveal

that the moment of a perpendicularly oriented incoherent

inclusion in multiple inclusion systems is positive, and its

magnitude increases non-linearly with increasing inclusion

concentration (Fig. 14a). This supports our experimental

findings that inclusions forming a cluster rotate syntheti-

cally faster than single, isolated inclusions in the same

model (Fig. 5b). The effect of inclusion concentration in

promoting synthetic rotation is a function of aspect ratio.

For a given concentration, the moment increases with aspect

ratio, attains a maximum value and then decreases with

further increase in aspect ratio (Fig. 14b). This implies that

the effect of concentration in synthetic rotation will be less

for large aspect ratios. We conducted experiments on

models containing two clusters of inclusions with aspect

ratio 2 and 4. These experiments clearly show that the

synthetic rotation of inclusions with aspect ratio 2 is

discernibly faster than that of inclusions with aspect ratio 4

(Fig. 15). The finding supports the results obtained from the

theory. It appears that the topology of the inclusion–matrix

system with inclusions of lower aspect ratios (w2) favours

intensification of the compressive stresses arising from the

mutual interaction of inclusion. This increase in compres-

sive stress normal to the surface of inclusion promotes the

rate of synthetic rotation of inclusions of aspect ratio 2

occurring in multiple associations.
4. Discussion

Recent experimental studies on single inclusion systems

mentioned in Section 1 reveal that mechanical condition at

the inclusion–matrix interface (coherent or incoherent) is a

crucial factor in determining the rotational motion of rigid

inclusions (Marques and Coelho, 2001; Mancktelow et al.,

2002; Ceriani et al., 2003). In the case of extremely low

inclusion–matrix coherence the inclusions can rotate

antithetically in simple shear, which is not predicted from



Fig. 13. jm versus a plots for three different inclusion-matrix coherence. (1) S*
0 Z2, T *

0 Z1; (2) S*
0 Z1:5, T *

0 Z1 and (3) S*
0 ZT *

0 Z0.
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Jeffery’s (1922) theory for coherent inclusions. The prime

aim of this paper is to advance the findings for multiple

inclusion systems and explore how the mechanical inter-

action, a function of inclusion concentration, can addition-

ally influence the rotational motion of rigid inclusions with

low coherence to the matrix. In experiments, inclusions with

the long axis oriented parallel and perpendicular to the shear

direction rotate antithetically and synthetically, respect-

ively, as documented in earlier studies on single inclusion

systems. The magnitudes of antithetic and synthetic rotation

are found to be larger in the case of multiple inclusions and

the difference increases with increasing inclusion concen-

tration. Our study suggests that the effect of inclusion–

matrix incoherence in the development of clast-associated

structures, e.g. fissures around rigid porphyroblasts, foli-

ation drag, will be more effective in rocks containing clasts

in large volume concentrations.

We used liquid soap as lubricating material at the

inclusion–matrix interfaces in the experimental models.

This was merely to reduce the cohesion strength of

inclusion–matrix interfaces, as in earlier experiments

(Mancktelow et al., 2002). Comparing the results obtained

from experiments on models with and without lubrication, it

is evident that the effect of inclusion concentration in

promoting antithetic rotation would be more pronounced for

further low inclusion–matrix coherence. Our study demon-

strates that reverse rotation of inclusions is possible in

multiple inclusion systems even when the interface strength

is not extremely low, a necessary condition for such motion

in single inclusion systems.

Both the experimental and theoretical models are based

on inclusions elliptical in shape. However, natural clasts

often show non-elliptical geometry (Treagus and Lan,

2003). Physical experiments clearly demonstrate that a
non-elliptical, asymmetrical shape of inclusions exerts

additional effects on the rotational behaviour of rigid

inclusions with weak interfaces (Mancktelow et al., 2002;

Ceriani et al., 2003). Based on these experimental

observations it appears that a non-elliptical shape would

be an additional factor in determining the rotational motion

in multiple inclusion systems, which demands a separate

analysis.

We have developed the theoretical model imposing the

conditions for mutual mechanical interaction on an elliptical

boundary, which is assumed to be a mean line separating the

mutually interacting neighbouring inclusions. As a result,

the effect of concentration on the rotation behaviour of rigid

inclusions shown in this paper is somewhat idealistic in

nature. There are some other limitations in the theoretical

approach. In its present form the analysis is applicable to

inclusion–matrix systems with inclusions axes oriented

either parallel or perpendicular to the direction of bulk

shear. Moreover, the analysis describes the instantaneous

rotation of inclusions and does not remain valid when the

inclusions experience significant amounts of rotation after a

finite progressive deformation. Evidently, the theoretical

results provide just a basis of explaining the effects of

inclusion concentration on inclusion rotation observed in

physical models. Our principal aim is to show that

increasing concentration promotes the rate of antithetic

rotation, resulting in the difference in rotation of isolated

inclusion and those occurring in a multiple association

under a given finite shear. However, in this approach it is not

possible to analyse the entire rotation history of multiple

inclusions in the experimental models presented here or any

natural shear zones. Considering inclusions at an angle to

the shear direction, a general theory is required to

investigate the course of rotation with progressive shear.



Fig. 14. (a) Non-linear increase of synthetic moment on inclusions with concentration. (b) Variation of synthetic moment with aspect ratio for different values

of concentration factor a. Inclusions are initially oriented perpendicular to the shear direction.
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Both the experimental and theoretical studies are based

on the bulk flow in simple shear. Our analyses are thus

applicable to natural shear zones with little or no

transpressional or transtensional movements. It has been

shown theoretically that shear zones with rigid walls are

likely to undergo dominantly shear movement (Mandal et

al., 2001b). However, there can be flattening strain in shear

zones with deformable walls or involving volume loss

(Ramsay, 1980). Rotation of interacting incoherent

inclusions in such settings demands further investigation.
In this study we have shown that elongate inclusions parallel

to the shear direction have a tendency to rotate antithetically

and that this tendency is enhanced with increasing inclusion

concentration. It can be qualitatively inferred that antithetic

rotation would be lower if the shear were accompanied with

bulk shortening across the shear direction. In that case

inclusions would define a stable fabric at an angle much

lower than shown here. In extreme situations inclusions

would perhaps remain stationary, as in the case of isolated

inclusions with non-lubricated interfaces (cf. Bell, 1985).



Fig. 15. Test models showing contrasting rotation of multiple inclusions

with aspect ratio RZ2 and RZ4, oriented perpendicular to the shear

direction. Note that the rotation of the inclusions of lower aspect ratio at the

centre of the multiple associations (right) is relatively high. Long dimension

of inclusions (RZ2): 2 cm.
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In spite of different limitations mentioned above, this

study enables us to refine our understanding on a variety of

inclusion-associated structures in naturally deformed rocks,

such as augen gneisses, mylonites. Mantled porphyroclasts

are often used as kinematic indicating structures in natural

shear zones (Passchier and Simpson, 1986). The geometry

of these structures depends on different physical factors,

such as rate of size reduction of porphyroclast, matrix–

porphyroclast coherence and rheology of mantle. Our study

suggests that increasing inclusion concentration can result

in reverse motion of porphyroclasts, especially when the

mantle is somewhat rheologically weak, and gives rise to

monoclinic mantle structures. On the other hand, porphyr-

oclasts oriented parallel to the shear direction might remain

stationary or rotate synthetically where they occur in very

low concentrations, and thereby show contrasting mantle

geometry. Many deformed rocks show rigid objects

showing fissures at the interfaces with the matrix. These

fissures are generally filled with either face-controlled or
displacement controlled crystal fibres, which are found to be

good kinematic indicators (Ramsay and Huber, 1987).

According to our model, the geometry of crystal fibres can

vary significantly, as both the magnitude and the sense of

rotation of inclusion may be different in different domains

with varying inclusion concentration. This study will be

useful, at least qualitatively to interpret synkinematic fibres

in deformed rocks containing inequant clasts in large

concentrations. Finally, we believe that our experimental

findings can be utilized to explain the orientation of

inclusion fabrics that are often noticed in natural shear

zones (Ceriani et al., 2003).
5. Conclusions

Based on the experimental findings and theoretical

analysis, the outcomes of this study are concluded along

the following points:
(1)
 In multiple inclusion systems, in addition to inclusion–

matrix coherence, the concentration of inclusions is a

crucial factor in controlling the rotational kinematics of

rigid inclusions. Increasing concentration promotes

instantaneous antithetic and synthetic rotation of

inclusions oriented parallel and perpendicular to the

shear direction, respectively.
(2)
 Isolated inclusions oriented parallel to the shear

direction experience little or no rotation when their

interfaces are not lubricated, whereas those occurring in

multiple association rotate antithetically.
(3)
 The effective moments in incoherent inclusions oriented

parallel to the shear direction are negative, resulting in

antithetic motion of inclusions. The magnitude of this

antithetic moment is a non-linear function of inclusion

concentration, showing a steep increase at large

concentrations. Again, when the concentration is kept

constant, the moment increases with inclusion aspect

ratio, but tends to assume an asymptotic value,

suggesting that antithetic rotation will be insensitive

to aspect ratio when the latter becomes large.
(4)
 Increasing inclusion–matrix coherence leads to an

overall reduction in the effective antithetic moment of

an inclusion oriented parallel to the shear direction.

However, the difference in moment resulting from

increasing coherence is reduced at high concentrations

of inclusions.
(5)
 In the case of inclusions oriented perpendicular to the

shear direction, the effective moment on inclusions is

positive, setting in a synthetic motion. Its magnitude

increases nonlinearly with inclusion concentration. For

a given concentration, the magnitude of synthetic

moment increases with aspect ratio to attain a maximum

value, and then decreases continuously with further

increase in aspect ratio. In multiple inclusion systems,

inclusions of large aspect ratios (e.g. 4) are thus likely to
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rotate synthetically slower than that of relatively low

aspect ratios (e.g. 2).
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